Artikelaktionen

Sie sind hier: Startseite / Aktuelles / Forschungsnews / Bereit für Exascale

Bereit für Exascale

Forscher entwickeln Algorithmus für Gehirn-Simulationen auf Superrechnern der nächsten Generation

Forschungszentrum Jülich, 19. Februar 2018

Das menschliche Gehirn mit seinen hundert Milliarden Nervenzellen ist ein Organ von ungeheurer Komplexität. Selbst mithilfe der schnellsten Superrechner ist es bis jetzt unmöglich, den Austausch von Gehirnsignalen in einem Netzwerk dieser Größe zu simulieren. Wissenschaftler des Forschungszentrums Jülich, des japanischen RIKEN-Instituts in Kobe und Wako und des schwedischen KTH Royal Institute of Technology in Stockholm haben gemeinsam nun die Voraussetzungen geschaffen, das Potenzial kommender Rechnergenerationen für entsprechende Simulationen voll auszuschöpfen. Die verbesserte Software beschleunigt auch Simulationen auf heutigen Superrechnern deutlich.

"Seit 2014 sind wir in der Lage, mit unserer Software Netzwerke bestehend aus ungefähr einem Prozent aller Neuronen des menschlichen Gehirns zu simulieren", erklärt Prof. Markus Diesmann vom Forschungszentrum Jülich. Die nächste Generation von Supercomputern, die sogenannte Exascale-Klasse, wie der in Kobe geplante Nachfolger des K Computers und JUWELS in Jülich, werden die Leistungsfähigkeit heutiger Supercomputer um das zehn- bis hundertfache übertreffen. Zum ersten Mal wird Wissenschaftlern dann die Rechenleistung zur Verfügung stehen, um neuronale Netzwerke in der Größenordnung des menschlichen Gehirns zu simulieren.

Scheinbar eine Sackgasse

Die Forscher nutzen für die Simulationen die weitverbreitete, frei verfügbare Software NEST, die unter anderem ein wichtiger Bestandteil im europäischen Human Brain Project ist. Das Verhalten jedes Neurons im Netzwerk wird von der Software durch eine Handvoll mathematischer Gleichungen repräsentiert. Bei der Erweiterung des Codes für immer leistungsstärkere Maschinen steckten die Experten um Markus Diesmann vor ein paar Jahren trotz aller Erfolge in einer Sackgasse. Supercomputer bestehen aus hunderttausend vernetzten Einzelrechnern, die auch als Rechenknoten bezeichnet werden. Jeder von ihnen ist ausgerüstet mit mehreren Prozessoren, die die anfallenden Berechnungen durchführen. "Während der Simulation der Nervenzell-Aktivität beherbergt jeder Rechenknoten Zehntausende von virtuellen Nervenzellen. Obwohl jedes dieser virtuellen Neuronen nur mit einem kleinen Teil aller Neuronen im gesamten Netzwerk verbunden ist, sendet bislang jedes dieser simulierten Neuronen seine Signale an alle Rechenknoten", erklärt Dr. Susanne Kunkel vom KTH Royal Institute of Technology in Stockholm. "Auf welchen Knoten die Zielneuronen liegen, mit denen die Neuronen verbunden sind, ist der Software nicht bekannt. Daher muss jeder Rechenknoten entscheiden, ob ein eintreffendes Signal für ihn relevant ist oder nicht."

Durchbruch durch neuen Algorithmus

Für vergleichsweise kleine Simulationen auf weniger als zehntausend Rechenknoten ist ein solches Kommunikationsschema optimal. Doch für Simulationen auf Exascale-Systemen ist diese Software kaum geeignet. Den Durchbruch, beschrieben in der jüngsten Veröffentlichung der Wissenschaftler, brachte ein neuer Algorithmus für die Konstruktion der virtuellen neuronalen Netzwerke. Vor dem Start der eigentlichen Simulation verständigen sich die Rechenknoten nun zunächst darüber, welche Knoten während der Simulation miteinander Informationen über die Aktivität der Neuronen austauschen. Jeder Rechenknoten erhält anschließend gezielt nur noch die Informationen, die auch für ihn bestimmt sind. Der speicherzehrende Test auf die Relevanz der empfangenen Signale gehört damit der Vergangenheit an.

Text: Forschungszentrum Jülich

>> mehr